
The Gauge Domain: Scalable Analysis of Linear
Inequality Invariants

Arnaud J. Venet

Carnegie Mellon University
NASA Ames Research Center

Moffett Field, CA 94035
arnaud.j.venet@nasa.gov

Abstract. The inference of linear inequality invariants among variables
of a program plays an important role in static analysis. The polyhedral
abstract domain introduced by Cousot and Halbwachs in 1978 provides
an elegant and precise solution to this problem. However, the computa-
tional complexity of higher-dimensional convex hull algorithms makes it
impractical for real-size programs. In the past decade, much attention
has been devoted to finding efficient alternatives by trading expressive-
ness for performance. However, polynomial-time algorithms are still too
costly to use for large-scale programs, whereas the full expressive power
of general linear inequalities is required in many practical cases. In this
paper, we introduce the gauge domain, which enables the efficient infer-
ence of general linear inequality invariants within loops. The idea behind
this domain consists of breaking down an invariant into a set of linear
relations between each program variable and all loop counters in scope.
Using this abstraction, the complexity of domain operations is no larger
than O(kn), where n is the number of variables and k is the maximum
depth of loop nests. We demonstrate the effectiveness of this domain
on a real 144K LOC intelligent flight control system, which implements
advanced adaptive avionics.

1 Introduction

The discovery of numerical relationships among integer variables within a loop
is one of the most fundamental tasks in formal software verification. Without
this piece of information it would be impossible, for example, to analyze pointer
arithmetic as it appears in real C programs. A fully automated solution based on
convex polyhedra has been proposed by Cousot and Halbwachs [11] in what prob-
ably remains the most spectacular application of Abstract Interpretation. The
polyhedral abstraction is precise enough to infer the exact invariants for most
program loops in practice. It is based on the double description method [21, 4],
which requires enumerating all faces of a convex polyhedron in all dimensions, an
operation that has exponential time complexity in the worst case. Unfortunately,
the combinatorial explosion almost always occurs in practice and this analysis
cannot be reasonably applied to codes involving more than 15 or so variables.

p = &msg;

for (i = 0; i < n; i++) {

if(*p == ...) {

...

p += 16;

} else {

...

p += 32;

}

}

Convex polyhedra:{
0 ≤ i ≤ n− 1
16i ≤ p ≤ 32i

Gauges:{
λ ≤ i ≤ λ
16λ ≤ p ≤ 32λ

Additional properties:{
λ ≤ n− 1
λ ∈ [0,+∞]

Fig. 1. Loop invariant expressed with convex polyhedra and gauges

Attempts have been made to improve the performance of the polyhedral
domain. They essentially consist in finding more tractable albeit less precise
alternatives to those domain operations that may exhibit exponential complexity
(join, projection) without modifying the expressiveness of the domain itself [26,
22]. Linear programming techniques are used instead of the double-description
method to compute approximate versions of operations on polyhedra. The idea
is that the Simplex algorithm exhibits better runtime performance in practice,
although still exponential in the worst case. However, available experimental data
make it difficult to predict how these techniques would scale to real applications.

Another and more popular approach consists in identifying a subclass of
convex polyhedra that possess better algorithmic properties. Notable domains
include template polyhedra [24], octahedra [5], subpolyhedra [15], simplices [25],
symbolic ranges [23] and the family of two-variables per inequality domains [18–
20, 17, 27]. Two members of the latter class, difference-bound matrices [18] and
octagons [19], are particularly important since, to the best of our knowledge,
they are the only general-purpose relational abstract domains that have been
applied to the verification of large applications [10, 1, 28, 3].

Among relational domains that can express inequalities, octagons and dif-
ference-bound matrices have the lowest computational complexity: quadratic in
space and cubic in time in the worst case. However, due to the nature of the
closure algorithm employed to normalize their representation, the worst-case
complexity is always attained in practice, which makes this kind of domain un-
usable for codes with more than a few dozen variables [28]. In order to address
this issue, it is necessary to break down the set of program variables into small
groups on which the abstract domain can be applied independently. This variable
packing can be performed statically before analysis using knowledge on the ap-
plication [10], or at analysis time, for example, by using dependency information
computed on the fly [28].

However, the limited expressiveness of weakly relational domains precludes
the direct analysis of pointer arithmetic, which requires more general forms of
inequality constraints. This issue is addressed in C Global Surveyor [28] by using
templates for access paths in data structures. The parameters appearing in the

template make up for the lack of expressive power of difference-bound matrices.
Although effective, these techniques substantially complicate the construction of
a static analyzer and they are very dependent on the characteristics of the code
analyzed.

In our experience with analyzing large NASA codes, we have observed that
most of the time, the value of a scalar variable inside a loop nest was entirely
determined by the control structure in terms of symbolic bounds of the form
a0 +a1λ1 + · · ·+akλk, where λ1, . . . , λk denote loop counters and a1, . . . , ak are
integer coefficients. In this paper, we present an abstract interpretation frame-
work in which each variable is approximated by a pair of such symbolic bounds,
which we call a gauge. This abstraction generates far fewer constraints than
weakly relational domains while providing greater expressiveness.

In Fig. 1 we have shown a code snippet that reads variable-sized data from a
buffer of bytes, a common pattern in embedded programs. Gauges represent the
implicit loop invariants, which are hard to infer, but do not say anything about
loop bounds. The abstraction shall therefore be complemented with additional
abstractions, like intervals and symbolic constants. The main idea is that it is far
more efficient to combine simpler abstractions rather than have a powerful but
inefficient domain take care of all properties at once. The gauge domain is not
intended as a replacement for convex polyhedra or weakly relational domains, as
it has limitations. However, it provides a simple and efficient way of generating
precise loop invariants for a large swath of code without the need for customizing
the static analyzer.

The paper is organized as follows. In Sect. 2, we formally define the gauge
abstraction and state some of its basic properties. Section 3 introduces the Ab-
stract Interpretation framework in which our analysis is specified. In Sect. 4,
we construct an abstract domain that can infer gauge invariants on programs.
Section 5 reports experimental results on a large NASA flight system. Section 6
concludes the paper.

2 The Gauge Abstraction

We now give a formal construction of gauges and characterize their natural
ordering. Let Λ = {λ1, . . . , λn} be a fixed set of positive counters. Given integer
coefficients a0, . . . , an, we call gauge bound the expression a0+

∑n
i=1 aiλi. Given

a gauge bound g, we define the upper gauge g as

g = {(x, l1, . . . , ln) ∈ Z× (Z+)n | x ≤ a0 +

n∑
i=1

aili}

We define the lower gauge g dually. Now, given two gauge bounds g = a0 +∑n
i=1 aiλi and g′ = a′0 +

∑n
i=1 a

′
iλi, we would like to characterize the inclusion

of upper gauges g ⊆ g′. This is equivalent to say that the following system has

no integral solution:

S :

λi ≥ 0 i ∈ {1, . . . , n}
x ≤ a0 + a1λ1 + · · ·+ anλn
x ≥ 1 + a′0 + a′1λ1 + · · ·+ a′nλn

First, observe that if a′0 < a0 then S has a trivial solution 〈x = a′0 + 1, λ1 =
0, . . . , λn = 0〉. Assume for now that a′0 ≥ a0 and S admits a rational solution
〈x = u, λ1 = l1, . . . , λn = ln〉 such that all li are positive. There exists a nonzero
positive integer µ such that µu, µl1, . . . , µln are all integers (take the lowest
common multiplier of all denominators for example). We deduce from S the
following inequalities:{

µu ≤ µa0 + a1(µl1) + · · ·+ an(µln)
µu ≥ µ(1 + a′0) + a′1(µl1) + · · ·+ a′n(µln)

which can be rewritten as:{
µu− (µ− 1)a0 ≤ a0 + a1(µl1) + · · ·+ an(µln)

µu− (µ+ (µ− 1)a′0) ≥ a′0 + a′1(µl1) + · · ·+ a′n(µln)

From a′0 ≥ a0 and µ ≥ 1 we deduce that

µ+ (µ− 1)a′0 > (µ− 1)a0

and then µu−(µ−1)a0 > µu−(µ+(µ−1)a′0). Therefore, the variable assignment

〈x 7→ µu− (µ− 1)a0, λ1 7→ µl1, . . . , λn 7→ µln〉

is a solution of S. We just proved that if S admits a rational solution, then it
also admits an integral solution. Therefore, S has no integral solution if and only
if it has no rational solution. We can now reason entirely over rationals, which
allows us to use a fundamental result of convex geometry, the Farkas lemma [29]:

Theorem 1 (Farkas Lemma). Let A ∈ Qm×d and a column vector z ∈ Qm.
Either there exists a point x ∈ Qd with Ax ≤ z, or there exists a non-null row
vector c ∈ (Q+)m, such that cA = 0 and cz < 0.

Note that, although originally established for real numbers, the Farkas lemma
can be proven using only elementary linear algebra [12] and therefore holds on
rationals. We define the matrix A ∈ Q(n+2)×(n+1) as follows:

A =

−1 0 · · · 0 0

0 −1
. . .

...
...

...
. . .

. . . 0
...

0 · · · 0 −1 0
−a1 · · · −an−1 −an 1
a′1 · · · a′n−1 a′n −1

Let x be the (n+ 1)-column vector and z the (n+ 2)-column vector defined as:

x =

λ1
...
λn
x

 and z =

0
...
0
a0

−a′0 − 1

Then, the system S can be equivalently rewritten as:

Ax ≤ z

According to the Farkas lemma, S has no rational solution if and only if there
exists a non-null (n + 2)-row vector c = (c1 . . . cn+2) of positive rationals such
that cA = 0 and cz < 0. If we unfold the matrix expression, this is equivalent
to:

−c1 − cn+1a1 + cn+2a
′
1 = 0

...
...

...
−cn − cn+1an + cn+2a

′
n = 0

cn+1 − cn+2 = 0
cn+1a0 − cn+2(a′0 + 1) < 0

If cn+1 = 0, then all ci’s are equal to zero, which contradicts the fact that c is
non-null. Hence cn+1 6= 0. Since c1, . . . , cn each appear in exactly one equation,
we can recast this condition in a much simpler form. The system Ax ≤ z has no
rational solution if and only if there exists a rational number c > 0 such that

c(a′1 − a1) ≥ 0
...

...
...

c(a′n − an) ≥ 0
c(a0 − (a′0 + 1)) < 0

Since c > 0, this is equivalent to the following condition

∀i ∈ {0, . . . , n} ai ≤ a′i

We can establish a similar result on lower gauges by duality.

Theorem 2. If g = a0 +
∑n
i=1 aiλi and g′ = a′0 +

∑n
i=1 a

′
iλi, then g ⊆ g′ (resp.

g ⊆ g′) iff ∀i ∈ {0, . . . , n} ai ≤ a′i (resp. ai ≥ a′i).

By analogy with intervals, we define a gauge as a pair [g, g′] of gauge bounds
and its denotation as g ∩ g′. Note that a gauge is not empty if and only if, for
all positive values of λ1, . . . , λn, there is an x ∈ Z such that

a0 + a1λ1 + · · ·+ anλn ≤ x ≤ a′0 + a′1λ1 + · · ·+ a′nλn

This condition can be equivalenty restated as

a′0 − a0 + (a′1 − a1)λ1 + · · ·+ (a′n − an)λn ≥ 0

for all positive values of λ1, . . . , λn. An elementary reasoning shows that this
property holds if and only if ai ≤ a′i for all i ∈ {0, . . . , n}, which is the exact
analogue of the non-emptiness condition for intervals. We denote by ⊥G the
empty gauge.

Now, given two non-empty gauges G = [gl, gu] and G′ = [g′l, g
′
u], we need to

characterize the inclusion of their denotation. Assume that G ⊆ G′. If gu = a0 +∑n
i=1 aiλi, then for all (l1, . . . , ln) ∈ (Z+)n, we have (a0 +

∑n
i=1 aili, l1, . . . , ln) ∈

G, because G is not empty. Since G ⊆ G′, we have (a0 +
∑n
i=1 aili, l1, . . . , ln) ∈

g′u. By definition of upper gauges, this entails gu ⊆ g′u. By duality, we also have
g
l
⊆ g′

l
. We just proved the following result:

Theorem 3. Given two non-empty gauges

G = [a0 +
∑n
i=1 aiλi, b0 +

∑n
i=1 biλi]

G′ = [a′0 +
∑n
i=1 a

′
iλi, b

′
0 +

∑n
i=1 b

′
iλi]

G ⊆ G′ iff ∀i ∈ {0, . . . , n} a′i ≤ ai ∧ bi ≤ b′i. The operation G tG′ defined as

[min(a0, a
′
0) +

n∑
i=1

min(ai, a
′
i)λi,max(b0, b

′
0) +

n∑
i=1

max(bi, b
′
i)λi]

is the least upper bound of G and G′.

It is quite intriguing that the natural order on gauges defined by the inclusion of
denotations is the pointwise extension of the order on intervals. Gauges define a
relational numerical domain that has the structure of a non-relational domain.
This remarkable property is key to the scalability of the gauge abstraction.

Given a gauge bound g, we denote by [g,+∞] the upper gauge g, by [−∞, g]
the lower gauge g, and by [−∞,+∞] the trivial gauge Z × (Z+)n. The order
relation and the join operation defined above are readily extended to these gen-
eralized gauges, in the same way as is done for intervals. If we denote by G the
set of all gauges, we have established that:

Theorem 4. (G,⊆,t, [−∞,+∞]) is a t-semilattice. The empty gauge ⊥G is
the bottom element.

Note that, in general, the intersection of two gauges is not a gauge and the
greatest lower bound cannot be defined.

3 Abstract Interpretation Framework

We construct our static analysis in the theoretical framework of Abstract Inter-
pretation [8, 9]. A program is represented as a control-flow graph and operates
over a set of integer variables X = {x, y, . . . } and a distinct set of integer non-
negative counters Λ = {λ1, . . . , λn}. The control-flow graph is given by a set
of nodes N , an initial node start ∈ N and a transition relation n → n′ : cmd
labeled by commands. A command is either a sequence s1; · · · ; sk of statements,

1: x = 0;

2: for (i = 0; i < 10; i++) {

3: x += 2;

4: }

5: ...

1→ 2 : x = 0; i = 0;new(λ)
2→ 3 : i ≤ 9
3→ 2 : x = x+ 2; i = i+ 1; inc(λ, 1)
2→ 4 : 10 ≤ i
4→ 5 : forget(λ)

Fig. 2. Representation of a simple C program in the language of the analyzer

a condition e1 ≤ e2, where e1, e2 are either variables or integer constants, or a
counter removal operation forget(λ), where λ ∈ Λ. The syntax of statements is
defined as follows:

stmt ::= x = exp x ∈ X
| new(λ) λ ∈ Λ
| inc(λ, k) λ ∈ Λ, k ∈ Z+

exp ::= c c ∈ Z
| x x ∈ X
| exp+ exp
| exp− exp
| exp ∗ exp

The concrete semantics is defined as a transition system on a set of states Σ.
A state σ ∈ Σ is a pair 〈n, ε〉, where n is a node of the control-flow graph and
ε ∈ ZX × (Z+)Λ is an environment assigning values to variables in X and Λ.
The semantics [[]] of statements and expressions is defined on environments as
follows:

[[x = e]]ε = ε[x 7→ [[e]]ε]
[[new(λ)]]ε = ε[λ 7→ 0]

[[inc(λ, k)]]ε = ε[λ 7→ ε(λ) + k]

The transition relation over states is defined as follows:

– If n→ n′ : s1; · · · ; sk, then 〈n, ε〉 → 〈n′, [[sk]] ◦ · · · ◦ [[s1]]ε〉,
– If n→ n′ : x ≤ y and ε(x) ≤ ε(y), then 〈n, ε〉 → 〈n′, ε〉,
– If n → n′ : x ≤ c and ε(x) ≤ c, then 〈n, ε〉 → 〈n′, ε〉 (and similarly for a

constant on the left-hand side of the condition),
– If n→ n′ : forget(λ), then, for any l ∈ Z+, 〈n, ε〉 → 〈n′, ε[λ 7→ l]〉.

The last rule simply expresses that the value of a counter that is removed from
scope can be any nonnegative integer. An initial state in the operational seman-
tics is a pair 〈start, ε〉, where ε is any environment, as variables are assumed to
be uninitialized at the beginning of the program. We denote by I the set of all
initial states. Although simplified, this representation of programs is very close
to the actual implementation of the analysis, which is based on LLVM [16].

In Fig. 2 we show how to translate a simple C program into our language. If
the original program is structured, it is quite straightforward to introduce the

counter operations, as shown in the figure. In case the input program comes
as a control-flow graph, we need to identify the loops and place the counters
accordingly. This can be readily done using Bourdoncle’s decomposition of a
graph into a hierarchy of nested strongly connected components [2]. This efficient
algorithm can be used to label each node of the control-flow graph with the
sequence of nested strongly connected components in which it belongs. Using this
information, loop counters can be assigned to each component and the counter
operations can be automatically added to the relevant edges of the control-
flow graph. The complexity of Bourdoncle’s algorithm is O(ke) where k is the
maximum depth of loop nests and e is the number of edges in the control-flow
graph.

We are interested in computing a sound approximation of the collecting se-
mantics [6], i.e., the set of all states that are reachable from an initial state.
Following the theory of Abstract Interpretation, the collecting semantics can be
expressed as the least fixpoint of a semantic transformer F. We denote by E the
set ZX × (Z+)Λ of all environments. Then, the semantic transformer F is the
function defined over ℘(E)N as follows:

∀n 6= start ∈ N : F(X)(n) = {ε ∈ E | ∃n′ ∈ N, ∃ε′ ∈ X(n′) : 〈n′, ε′〉 → 〈n, ε〉}

with F(X)(start) = I. In order to obtain a computable approximation of the
least fixpoint lfp F, we need to construct an abstract semantic specification [9],
i.e.,

– An abstract domain (D],v) together with a monotone concretization func-
tion γ : (D],v)→ (℘(E),⊆),

– An abstract initial state I] ∈ D] such that I ⊆ γ(I]),
– An abstract semantic transformer F] : (D])N → (D])N such that F ◦ γ ⊆
γ ◦ F],

– A widening operator ∇ : D] ×D] → D] such that, for any sequence (x]i)i≥0
of elements of D], the sequence (y]i)i≥0 inductively defined as:{

y]0 = x]0
y]i+1 = y]i ∇ x]i+1

is ultimately stationary.

Then, it can be shown [9] that the sequence (F]i)i≥0 iteratively defined as follows
using the pointwise extension of ∇:

F]0 = I]
F]i+1 = F]i if F](F]i) v F]i

= F]i ∇ F](F]i) otherwise

is ultimately stationary and its limit is a sound approximation of lfp F.

4 The Gauge Domain

In this section we will construct an abstract semantic specification for the gauge
abstraction. We cannot use the gauge semilattice G as is, because gauges are
defined for all values of the counters, whereas in the first steps of the abstract
iteration sequence only isolated counter values are computed. We need an oper-
ation similar to the higher-dimensional convex hull for convex polyhedra, which
can build a convex approximation of a discrete set of points. In order to enable
this type of induction, we need to keep track of constant counter values that are
obtained at the very first steps of the abstract iteration sequence.

We denote by (Z>,v) the semilattice of constants with greatest element >.
For x, y ∈ Z>, x v y iff y = > or x = y. We define the domain of sections
S = (ZΛ>,v) ordered by pointwise extension of the order on Z>. We denote by
E] = (GX ,v) the set of abstract environments ordered by pointwise inclusion.
A gauge section is a pair (ρ, ε]), where ρ ∈ S and ε] ∈ E], such that only
counters in ρ−1(>) may appear inside a gauge bound of ε]. The concretization
γ(ρ, ε]) ∈ ℘(E) of the gauge section is the set of all concrete environments ε ∈ E
satisfying the following property:

∀x ∈ X ,∃(l1, . . . , ln) ∈ (Z+)Λ : (ε(x), l1, . . . , ln) ∈ ε](x)
∧ ∀i ∈ {1, . . . , n} : ρ(λi) 6= > ⇒ li = ρ(λi) ∧ ∀i ∈ {1, . . . , n} : ε(λi) = li

A gauge section is simply an abstract environment where the value of certain
counters is set. Working on gauge sections instead of gauges will allow us to
construct the invariants incrementally during the abstract iteration sequence. We
denote by (GS,v) the domain of gauge sections ordered by pointwise extension
of the orders on S and E].

We can now construct an abstract semantic specification for the gauge ab-
straction. We could take GS as the abstract domain of our specification. How-
ever, this choice would yield poor results on nested loops with constant iteration
bounds, a very common construct in flight systems and more generally in embed-
ded applications. In order to keep a good level of precision, we need to maintain
information on the ranges of the counters. We denote by I the standard lattice
of intervals [7]. The abstract domain D] is given by GS× IΛ endowed with the
pointwise extension of the underlying orders. The concretization γ((ρ, ε]), `])
of an element of the product domain D] is defined in the standard way as
{ε ∈ γ(ρ, ε]) | ∀i ∈ {1, . . . , n} : ε(λi) ∈ `](λi)} The abstract initial state I] is
trivially given by the element of D] in which all components are set either to >
or to [−∞,+∞].

The next thing we need to construct is a widening operator on D], as it will be
needed to define the abstract semantic function later on. We just need to define a
widening on the domain of gauge sections, since the widening operator on D] can
be obtained by pointwise application of the widenings on the underlying domains.
We first need some auxiliary operations. If G = [a0 +

∑n
i=1 aiλi, b0 +

∑n
i=1 biλi]

is a gauge, j ∈ {1, . . . , n} and l ∈ Z+, we denote by G[λj = l] the gauge

[a0 + aj l +
∑
i 6=j

aiλi, b0 + bj l +
∑
i 6=j

biλi]

where we set the value of one counter. Let G and G′ be two gauges defined as
follows:

G = [a0 +
∑n
i=1 aiλi, b0 +

∑n
i=1 biλi]

G′ = [a′0 +
∑n
i=1 a

′
iλi, b

′
0 +

∑n
i=1 b

′
iλi]

Now, assume there is ι ∈ {1, . . . , n} such that aι = bι = a′ι = b′ι = 0. Let
u, v ∈ Z+ be two distinct non-negative integers. We want to construct a gauge,
denoted by G ∇λιu,v G′ such that

G[λι = u], G′[λι = v] ⊆ G ∇λιu,v G′

This operation implements the basic induction step with respect to a counter.
We have two gauges at two different values of the counter λι and we want to
extrapolate a gauge for all possible values of the counter. We choose a simple

approach and perform a linear interpolation. We compute the slope αι = ba
′
0−a0
v−u c

for the lower gauge (resp. βι = d b
′
0−b0
v−u e for the upper gauge), taking care of

rounding to the lower (resp. upper) nearest integer. This operation introduces
new constants α0 = a0−αιu and β0 = b0−βιu into the gauge expression. There
is no guarantee that the slopes and constants calculated from the upper (resp.
lower) gauge will appear on their respective side, i.e., α0 ≤ β0 and αι ≤ βι.
Therefore, we define G ∇λιu,v G′ as the gauge [c0 +

∑n
i=1 ciλi, d0 +

∑n
i=1 diλi],

where

– c0 = min(α0, β0)
– d0 = max(α0, β0)
– cι = min(αι, βι)
– dι = max(αι, βι)
– For i 6= ι and i 6= 0, ci = min(ai, a

′
i) and di = max(bi, b

′
i)

This elementary widening can be defined similarly when one bound of the gauges
is ±∞. We need a variant of the previous operation when one of the gauges is
defined over λι. We keep the same notations and we now relax the assumptions,
i.e., a′ι and b′ι may be nonzero, and v = >. The gauge G′ is already defined for all
values of λι. There is no need to change the slopes a′ι and b′ι, we simply need to
adjust the constant coefficients. Hence, we set αι = a′ι and βι = b′ι, α0 = a0−a′ιu
and β0 = b0 − b′ιu. Using the previous notations, we define G ∇λιu,> G′ as the

gauge [c0 +
∑n
i=1 ciλi, d0 +

∑n
i=1 diλi]

We now construct an interval-like widening ∇I on gauges, which extrapolates
unstable bounds. If we denote by L the set {0, . . . , n}, this widening is defined
as follows:

G ∇I G
′ =

G if ∀i ∈ L : ai ≤ a′i ∧ b′i ≤ bi
[a0 +

∑n
i=1 aiλi,+∞] if ∃j ∈ L : bj < b′j ∧ ∀i ∈ L : ai ≤ a′i

[−∞, b0 +
∑n
i=1 biλi] if ∃j ∈ L : a′j < aj ∧ ∀i ∈ L : b′i ≤ bi

[−∞,+∞] otherwise

Similarly, given I ⊆ Λ, we define a partial join operation tI on gauges as follows:
G tI G′ = [min(a0, a

′
0) +

∑n
i=1 aiλi,max(b0, b

′
0) +

∑n
i=1 biλi], where

ai =

{
min(ai, a

′
i) if λi ∈ I

ai otherwise
and bi =

{
max(bi, b

′
i) if λi ∈ I

bi otherwise

The widening and partial join operations on gauges defined above can be

extended pointwise to abstract environments in E]. Now, let (ρ1, ε
]
1) and (ρ2, ε

]
2)

be two gauge sections. Let ∆ = {λ′1, . . . , λ′k} be the set of counters on which the
sections ρ1 and ρ2 disagree, and A = Λ\∆ the set of counters on which they
agree. If ∆ 6= ∅, we define the widening of the gauge sections as follows:

(ρ1, ε
]
1) ∇ (ρ2, ε

]
2) =

(
ρ1 t ρ2,

(
· · ·
(
ε]1 ∇

λ′
1

ρ1(λ
′
1),ρ2(λ

′
1)
ε]2

)
· · · ∇λ

′
k

ρ1(λ
′
k
),ρ2(λ

′
k
)
ε]2

)
tA ε]2

)
If ∆ = ∅, then ρ1 = ρ2, and we simply use the interval-like widening as follows:

(ρ1, ε
]
1) ∇ (ρ2, ε

]
2) =

(
ρ1, ε

]
1 ∇I ε

]
2

)
Note that the definition of the widening depends on the order in which the
counters in ∆ are arranged, as the linear interpolation widening defined above
is commutative but not necessarily associative. In practice, for usual loop con-
structs, which are the main target of our analysis, the order in which the widening
operations are performed has no effect on the result, but this may not always be
the case. This is one limitation of our approach as compared to convex polyhedra
and weakly relational domains.

We are now ready to define the abstract semantic function F]. We first define
the abstract semantics of expressions. Let G and G′ be two gauges defined as
follows:

G = [a0 +
∑n
i=1 aiλi, b0 +

∑n
i=1 biλi]

G′ = [a′0 +
∑n
i=1 a

′
iλi, b

′
0 +

∑n
i=1 b

′
iλi]

We define G + G′ = [(a0 + a′0) +
∑n
i=1(ai + a′i)λi, (b0 + b′0) +

∑n
i=1(bi + b′i)λi]

and G − G′ = [(a0 − b′0) +
∑n
i=1(ai − b′i)λi, (b0 − a′0) +

∑n
i=1(bi − a′i)λi]. Since

the gauge abstraction is linear, we cannot compute the multiplication exactly. In
pratice, multiplication mostly occurs in pointer arithmetic when scaling a byte
offset to fit a type of a certain size. Hence, it is sufficient to consider the case
when one of the gauges is a singleton, say G′ = [c, c]. Then we define

G ∗G′ =

[
ca0 +

n∑
i=1

caiλi, cb0 +

n∑
i=1

cbiλi

]
if c is positive, swapping the bounds when c is negative. Other cases when G
is constant, both gauges are constant or one is zero are handled similarly. In
all other cases we just return the trivial gauge [−∞,+∞]. For brevity, we did
not go over the cases when one of the gauge bounds is infinite as they are
handled similarly. The abstract semantics of expressions is readily defined from
the previous operations on gauges.

Now, let ((ρ, ε]), `]) be an element of D]. We define the abstract semantics
of statements as follows. In the case of an assignment operation, we have

[[x = e]]]((ρ, ε]), `]) = ((ρ, ε][x 7→ [[e]]]ε]]), `])

For any counter λ, we denote by ε]|λ the abstract environment in which all
occurences of a gauge where λ appears with a non-zero coefficient have been

replaced with [−∞,+∞]. Then, the abstract semantics of a new(λ) operation
can be defined as follows:

[[new(λ)]]]((ρ, ε]), `]) = ((ρ[λ 7→ 0], ε]|λ), `] [λ 7→ [0, 0]])

Given a gauge G = [a0 +
∑n
i=1 aiλi, b0 +

∑n
i=1 biλi], a counter λj and k ∈ Z+,

we define the gauge incλj ,k(G) as follows:[
min(a0 − kaj , a0 − kbj) +

n∑
i=1

aiλi,max(a0 − kaj , a0 − kbj) +

n∑
i=1

biλi

]
This operation corresponds to incrementing a counter by a constant. The re-
sulting constant coefficients may not satisfy the consistency condition for a non-
empty gauge, whence the introduction of min and max operations. Cases where
one of the gauge bounds is infinite are handled similarly. We can extend this op-
eration pointwise to abstract environments. Thus, we can define the semantics
of a inc(λ, k) operation as follows:

[[inc(λ, k)]]]((ρ, ε]), `]) = ((ρ[λ 7→ ρ(λ) + k], incλ,k(ε])), `][λ 7→ `](λ) + k])

Note that for clarity we have overloaded the addition operator, but its semantics
depends on the domain on which it applies.

It now remains to define the abstract semantics of commands. For a sequence
of statements s1 . . . sn, the abstract semantics is obviously given by [[sn]]] ◦ · · · ◦
[[s1]]]. The abstract semantics of a condition x ≤ y is defined as follows. Assume
that a0 +

∑n
i=1 aiλi is the lower gauge bound of ε](x) and b0 +

∑n
i=1 biλi is the

upper gauge bound of ε](y). We denote by C the linear inequality constraint
a0 − b0 +

∑n
i=1(ai − bi)λi ≤ 0. Then we define

[[x ≤ y]]]((ρ, ε]), `]) = ((ρ, ε]), reduceC(`]))

where reduceC(`]) is the reduction of a collection of variable ranges against
a linear inequality constraint, using the algorithm defined in [13]. Since this
algorithm is based on constraint propagation, we arbitrarily limit the number
of propagation cycles performed (the threshold in our implementation is 5) so
as to maintain an O(|Λ|) complexity. No impact on precision has been observed
in our experiments. The other types of conditions are handled similarly. Note
that this operation only affects the loop counter bounds and does not change
the gauge invariants.

Now, consider a gauge G = [a0 +
∑n
i=1 aiλi, b0 +

∑n
i=1 biλi], a counter λj

and an interval [l, u]. We define the operation coalesceλj ,[l,u](G) as follows:

coalesceλj ,[l,u](G) =

a0 + aj l +
∑
i 6=j

aiλi, b0 + bju+
∑
i6=j

biλi

We can extend this operation pointwise on abstract environments. Then, we can
define the semantics of the forget(λ) operation as follows:

[[forget(λ)]]((ρ, ε]), `]) = ((ρ[λ 7→ >], coalesceλ,`](λ)(ε
])), `][λ 7→ [−∞,+∞]])

The forget(λ) operation is used when exiting the scope of a loop. If we did not
inject the range information of the loop counter back into the gauge invariants,
we would incur a major loss of accuracy when analyzing loops with constant
iteration bounds. This points to a major limitation of the gauge abstraction: it
only maintains precise loop invariants inside a loop, but most of this information
is lost when exiting the loop. The polyhedral domain keeps relational information
across loop boundaries and is more precise in this respect.

Finally, we define the abstract semantic transformer F] as follows

∀n 6= start ∈ N : F](X)(n) = ∇{[[cmd[]](X(n′)) | n′ → n : cmd}
with F](X)(start) = I]. Note that the widening operation is used to merge the
invariants over a join node. We only need to use the interval-like widening∇I and
the widening on IΛ when it is the entry node of a strongly connected component,
otherwise we can simply use the join operations, which provide better accuracy.

All elementary domain operations only depend on the number of active loop
counters and the number of variables in the program. Using a sparse implemen-
tation of abstract environments, it is not difficult to see that all operations have
an O(km) time complexity in the worst case, where m is the number of program
variables and k is the maximum depth of loop nests in the program. If we con-
sider k as a constant, which is a realistic assumption in pratice, all operations
are linear in the number of program variables. The gauge domain has a very low
complexity in the worst case and is guaranteed to scale for large programs.

In order to illustrate how the abstract semantics operates, we unroll the first
few steps of the abstract iteration sequence on the program shown in Fig. 2:

– Node 1: (({} , {}) , {})
– Node 2: ((

{λ 7→ 0} ,
{
x 7→ [0, 0]
i 7→ [0, 0]

})
,
{
λ 7→ [0, 0]

})
– Node 3: The reduction operation has no effect on the invariant((

{λ 7→ 0} ,
{
x 7→ [0, 0]
i 7→ [0, 0]

})
,
{
λ 7→ [0, 0]

})
– Node 2 through the back edge:((

{λ 7→ 1} ,
{
x 7→ [2, 2]
i 7→ [1, 1]

})
,
{
λ 7→ [1, 1]

})
We perform the linear interpolation widening and we obtain:((

{λ 7→ >} ,
{
x 7→ [2λ, 2λ]
i 7→ [λ, λ]

})
,
{
λ 7→ [0,+∞]

})
This is the limit and convergence will be confirmed at the next iteration.

– Node 3: we perform the reduction operation on intervals and we obtain((
{λ 7→ >} ,

{
x 7→ [2λ, 2λ]
i 7→ [λ, λ]

})
,
{
λ 7→ [0, 9]

})
The information on the loop bounds has been recovered thanks to the re-
duction operation.

Analysis Analysis Time Precision

Intervals + Complete Inlining 41 min 79%
Commercial Tool 5 hours 91%
Octagons > 27 hours N/A
Gauges 10 min 30 sec 91%

Fig. 3. Experimental results

5 Experimental Evaluation

We have implemented the gauge domain described in this paper in a buffer-
overflow analyzer for C programs. The gauge domain is well suited for this kind
of application, as it is good at discovering invariants that hold inside usual
loop constructs. The buffer-overflow analyzer is implemented within an Abstract
Interpretation framework developed at NASA Ames Research Center by the
author and named IKOS (Inference Kernel for Open Static Analyzers). It is
beyond the scope of this paper to describe the design of the buffer-overflow
analyzer. We can just say that it is based on the LLVM front-end [16] and
computes an abstract representation of objects and pointers in a C program.
The analysis is modular and the effect of each function in memory is summarized
by numerical constraints on array indices and pointer offsets that are affixed
to the abstract memory graph. These numerical constraints are represented by
gauges. Symbolic bounds (such as the size of an array passed as an argument to
a function) are represented using an elementary domain of symbolic constants,
which is used in combination with the gauge abstraction.

We have run the analyzer on a large flight system developed at NASA Dryden
Flight Research Center and Ames Research Center. It consists of 144 KLOC of
C and implements advanced adaptive avionics for intelligent flight control. It is
a very pointer intensive application where matrix operations are pervasive. We
have compared the performance of this analyzer with that of (1) a simple interval
analysis running on a version of the program where function calls have been
completely expanded using the LLVM inliner, (2) a leading commercial static
analyzer based on Abstract Interpretation, and (3) a version of our analyzer
in which octagons [19] have been subsituted for gauges. In the latter, we used
Miné’s implementation of the octagon domain from the APRON library [14].
The results of these experiments are presented in Fig. 3. All analyzers ran on a
MacBook Air with a 1.86 Ghz Intel Core 2 Duo and 2 GB of memory, except
the commercial tool, which is installed on a high-end server with 32 CPU cores
and 64 GB of memory. The precision denotes the fraction of all array-bound
operations which could be statically verified by the analyzer. This figure is not
available for the version of our analyzer based on octagons, as we decided to kill
the analysis process after allowing it to run continuously for over 27 hours.

6 Conclusion

We have constructed a numerical relational domain that is able to infer pre-
cise loop invariants and is guaranteed to scale thanks to tight bounds on the
complexity of the domain operations. An experimental study led on a complex
flight system developed at NASA showed that the gauge abstraction is able to
deliver accurate loop invariants in a consistent way. This domain is not intended
to be a replacement for more costly relational domains like convex polyhedra.
It should be seen as a cheap numerical analysis that is able to discharge many
simple verification properties, so that more powerful and computationally costly
domains can be used to focus on a significantly smaller portion of the program.

Acknowledgement. We are extremely grateful to Tim Reyes for spending
many hours getting the code through the commercial static analyzer.

References

1. O. Bouissou, E. Conquet, P. Cousot, R. Cousot, J. Feret, K. Ghorbal, E. Goubault,
D. Lesens, L. Mauborgne, A. Miné, S. Putot, X. Rival, and M. Turin. Space
software validation using abstract interpretation. In Proc. of the International
Space System Engineering Conference, Data Systems in Aerospace (DASIA’09),
pages 1–7, 2009.

2. F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc.
of the International Conference on Formal Methods in Programming and their
Applications, pages 46–55, 1993.

3. G. Brat and A. Venet. Precise and scalable static program analysis of NASA flight
software. In Proc. of the IEEE Aerospace Conference, 2005.

4. N. V. Chernikova. Algorithm for discovering the set of all the solutions of a linear
programming problem. U.S.S.R. Computational Mathematics and Mathematical
Physics, 8(6):282–293, 1968.

5. R. Clarisó and J. Cortadella. The octahedron abstract domain. In Proc. of the
Static Analysis Symposium (SAS’04), pages 312–327, 2004.

6. P. Cousot. Semantic foundations of program analysis. In Program Flow Analysis:
Theory and Applications, chapter 10, pages 303–342. Prentice-Hall, 1981.

7. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proc. of the International Symposium on Programming (ISOP’76), pages 106–
130, 1976.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings
of the Symposium on Principles of Programming Languages (POPL’77), pages
238–252, 1977.

9. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, 1992.

10. P. Cousot, R. Cousot, J. Féret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
The ASTRÉE Analyser. In Proc. of the European Symposium on Programming
(ESOP’05), pages 21–30, 2005.

11. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proc. of the Symposium on Principles of Programming
Languages (POPL’78), pages 84–97, 1978.

12. A. Dax. An elementary proof of Farkas’ lemma. SIAM Rev., 39(3):503–507, 1997.
13. W. Harvey and P. Stuckey. Improving linear constraint propagation by changing

constraint representation. Constraints, 8(2):173–207, 2003.
14. B. Jeannet and A. Miné. APRON: A library of numerical abstract domains for

static analysis. In Computer Aided Verification (CAV’09), volume 5643 of LNCS,
pages 661–667. Springer, 2009.

15. V. Laviron and F. Logozzo. Subpolyhedra: A (more) scalable approach to infer
linear inequalities. In Proc. of the Conference on Verification, Model Checking,
and Abstract Interpretation (VMCAI’09), pages 229–244, 2009.

16. The LLVM Compiler Infrastructure. http://llvm.org.
17. F. Logozzo and M. Fähndrich. Pentagons: a weakly relational abstract domain

for the efficient validation of array accesses. In Proc. of the ACM Symposium on
Applied Computing (SAC’08), pages 184–188, 2008.

18. A. Miné. A new numerical abstract domain based on difference-bound matrices. In
Proc. of the Symposium on Programs as Data Objects (PADO II), pages 155–172,
2001.

19. A. Miné. The octagon abstract domain. In Proc. of the Workshop on Analysis,
Slicing, and Transformation (AST’01), pages 310–319, 2001.

20. A. Miné. A few graph-based relational numerical abstract domains. In Proc. of
the Static Analysis Symposium (SAS’02), pages 117–132, 2002.

21. T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall. The double descrip-
tion method. Annals of Mathematics Studies, II(28):51–73, 1953.

22. S. Sankaranarayanan, M. Colón, H. B. Sipma, and Z. Manna. Efficient strongly
relational polyhedral analysis. In Proc. of the Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI’06), pages 111–125, 2006.

23. S. Sankaranarayanan, F. Ivancic, and A. Gupta. Program analysis using symbolic
ranges. In Proc. of the Static Analysis Symposium (SAS’2007), pages 366–383,
2007.

24. S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of linear systems
using mathematical programming. In Proc. of the Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI’05), pages 21–47, 2005.

25. H. Seidl, A. Flexeder, and M. Petter. Interprocedurally analysing linear inequality
relations. In Proc. of the European Symposium on Programming (ESOP’07), pages
284–299, 2007.

26. A. Simon and A. King. Exploiting sparsity in polyhedral analysis. In Proc. of the
Static Analysis Symposium (SAS’05), pages 336–351, 2005.

27. A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequality as an
Abstract Domain. In Logic-Based Program Synthesis and Transformation, pages
71–89, 2003.

28. A. Venet and G. P. Brat. Precise and efficient static array bound checking for
large embedded C programs. In Proc. of the Conference on Programming Language
Design and Implementation (PLDI’04), pages 231–242, 2004.

29. G. M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer,
1995.

